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Abstract—1In our project, we consider the problem of
replicating human two-fingered grasping motions on the
AX12 Smart Robotic Arm. Two-fingered grasping motions
are among the most common motions used in everyday life.
Examples include picking up a plate from a dishwasher,
moving a chess piece, and as we will demonstrate, opening
a drawer. In fact, many more complicated motions, such
as holding a pen/pencil and writing involve a two-fingered
grasping component. To accomplish this goal, we designed
a sensor mount positioned behind the robotic arm that
accommodates a variety of sensors including a 720p high-
definition webcam. Then, using SIFT features, we locate (in
the webcam image) the feature associated with the drawer
that we want to open and close defined by a point in the im-
age. Using previous calibration and bilinear interpolation,
we convert this coordinate into global Cartesian space. This
coordinate is subsequently fed into the analytical inverse
kinematics service which replies with the joint coordinates.
Subsequently, these are given to the controller which
moves the arm to a desired location. Then, using a series
of movements, we can perform our task. In particular,
this project takes advantage of ROS’s service/client and
publisher/subscriber model. These paradigms form the
basis for communication between different components of
the project.

I. INTRODUCTION

Two-fingered grasping motions involving the thumb
and the index finger are some of the most common mo-
tions used in everyday tasks such as picking up a plate
from a dishwasher, moving a chess piece, and opening a
drawer. However, the two-fingered grasp usually plays a
fundamental part in more complicated motions such as
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writing, using chopsticks, and even pitching a baseball.
It is a easy to see that many of these motions apply
to everyday household tasks which are often repetitive
and could, technical challenges aside, be successfully
performed by a robot. However, the technical problems
that present themselves in the design of such a robot are
extremely varied and difficult.

Consider what occurs when you move a rook during
a game of chess when the only other pieces left on the
board are the opposing kings. Using information from
two eyes, the brain processes the images that are focused
on each retina and obtains the location of the rook. The
brain subsequently, through experience gained during
childhood and throughout life, instructs your arm to
move to that position. However, this position is reached
by changing the angles within each of our numerous
joints. The shoulder, elbow, wrist and the other more
minor joints must be at the correct location to ensure a
successful grasp of the object.

In a robot, this first involves obtaining a Cartesian
coordinate in global space. This coordinate is in the
analogous robot problem, in an environment without
obstacles where it has some knowledge about the coor-
dinates of its surroundings. This is much more difficult
because with a single camera, as in our setup, we can
only obtain a projection of the three-dimensional world.
Thus, we must extrapolate based on known points in
order to obtain a three-dimensional global coordinate
from the two-dimensional image. Obtaining the 2D
coordinate on which the object is located is an additional
problem. We must find the features that are unique to
the object in image and then obtain a representative
point, usually the center. This is an extremely difficult
problem but fortunately, algorithms such as SIFT have
been developed that provide solutions to the problem
that can be adapted for our needs. Then, we must
determine the joint angles for each joint in the robot that
will move the end-effector to the desired position. This
requires solving the inverse kinematics problem which
unlike the forward kinematics problem, is non-linear and
usually has multiple solutions depending on the robot
and the different constrains. Subsequently, we must use



a controller to send the correct instruction bits to each
individual servo in order to move to the desired point.

Thus, we can see that a simple everyday task for the
human is extremely challenging for a robot to perform,
even in a structured environment with no obstacles.
This paper outlines the related work and describes our
approach to the problem. This framework is tested in
the experiments described in Section IV. Lastly, we
summarize the results of the experiment and possible
extensions.

II. RELATED WORK

Grasping objects is a widely studied area in robotics.
However the specific task of opening drawers has not
been studied extensively. The paper “Learning to Grasp
Novel Objects using Vision” [1] provides a good ap-
proach to tackle the challenge of determining where to
grasp unknown objects using only a webcam. In our
project we also rely only on a webcam, however instead
of using machine learning to classify grasping points we
rely on the pre-known structure of the drawers and use
the SIFT algorithm to determine their location.

The control of our arm is also similar to the control
of the 5-DOF Katana arm used on the STAIR platform.
They describe two classes of grasps that the arm can
take: "downward and outward”. The downward grasp is
taken when objects are close, and the outward is for
objects that are further away from the arm. We have
adopted this control with our arm and choose to always
take an outward grasp because the drawers must be
located away from the arm in order to open them once
they are grasped.

III. APPROACH
A. Hardware

The AX-12 Smart Robotic Arm (Figure 1) with a
dual gripper has six degrees of freedom consisting of
a base swivel, shoulder pivot, elbow pivot, wrist swivel,
and two independently controlled gripping fingers. It
also has an angled fixed joint connected to the base
swivel. The AX-12 servos have been a major issue in
this project because of torque limitations. If the arm is in
a horizontal fully extended position the shoulder joint is
unable to lift the arm up. This is a major problem when
working with drawers because we need the arm in a
fully extended position in order to reach a drawer.

The only sensor we use is a 720p Microsoft webcam
positioned above the arm looking down at a 45 degree
angle, as shown in Figure 2. This is attached to a custom
mount designed to hold it rigidly in place with a clear
view of the workspace.
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Fig. 1. AX 12+ Smart Robotic Arm with Dual Gripper

B. Controller

The low-level control is based upon a ROS pack-
age developed by the University of Arizona Robotics
Research Group. It provides low-level commands for
controlling the joint servos on the AX-12 Smart Robotic
Arm. Additional work was done in modifying the con-
troller architecture to accommodate smoother move-
ments of the robotic arm.

Given a set of waypoints generated by the path plan-
ner, the controller is responsible for smoothly moving
the arm between each waypoint. In order to generate
smooth movements, the joints will move simultaneously
rather than sequentially. The two controller architectures
investigated are the joint-space controller and the re-
solved motion-rate controller.

The joint-space controller uses feedback to control
each joint independently. As shown in the following
system diagram, the joint-space controller incorporates
multiple independent controllers for each joint. In turn,
each of these controllers can be implemented as a PD
controller to drive the joint angle error to zero.

The resolved motion-rate controller relies on the in-
verse of the kinematics model to drive the joint state
to the desired position. The Jacobian of the arm can
be derived from the forward kinematics equation. The
following equation expresses how variations in the joint
state maps to variations in the end-effector state.

5z = J(0)56 (1)

Since the dimension of the joint space is greater than
the dimension of the end-effector state, one can solve
for 60 by applying the pseudo-inverse.

50 = JTox ()



Fig. 2. Webcam is located above and behind robot arm looking down
at a 45 degree angle.

The resulting solution using the pseudo-inverse mini-
mizes the least-squares error of the joint-state. A simple
control law can be derived based upon this result.

e(new) — e(old) + JT(SZ‘ 3)

where dx = x4 — x, the error between the desired end-
effector position and the measured end-effector position.

C. Inverse Kinematics

In the AX12 Smart Robotic Arm, we have a cylin-
drically rotating base with a two degree of freedom ma-
nipulator. This arrangement actually allows the inverse
kinematics problem to be solved analytically. Consider a
problem similar to obtaining joint coordinates from the
global Cartesian coordinates: obtaining joint coordinates
from the cylindrical coordinates in the global frame.
Looking at the problem from this angle, we can see
that p, the radial length, is only determined by the 2R
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Fig. 4. Resolved motion-rate controller system diagram

section of the arm through a project based on the fixed
45° angle of the fixed joint. A similar projection allows
us to determine the z coordinate contribution from the
2R section of the arm. In addition, the ratio of the
x coordinate to the y coordinate is determined by ¢,
the azimuthal angle. This provides us with one of the
joint coordinates: the base angle #; = ¢. The process
for obtaining the other two joint angles is much more
complicated.

Thus, our strategy is as follows. Using the given x and
y coordinate, we can easily determine p = /22 + y2.
Then, we can obtain ¢ = arctan%. Then we can
subtract the contribution to the z coordinate from the
base section of the arm and the section of the arm
from the fixed joint to the shoulder joint. Thus, we are
left with the z,q; coordinate which corresponds to the
contribution to the z coordinate from the 2R section of
the arm. Then, we can obtain p,q; by subtracting the
contribution of the diagonal section of the base. This
effectively decouples our problem. All that is left to
determine is 3, the angle of the shoulder joint, and 03,
the angle of the elbow joint.

To simplify the problem, we rotate the coordinate
system by 45° counter-clockwise. This allows the equi-
librium position of the arm to be on the horizontal axis



on the p’ and 2’ two-dimensional space.

Applying the law of cosines on the 2R section of the
arm (similar to the approach in [2] with different angle
conventions), we obtain

2,02 g2 2
— 21 ll1 . @
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which gives us a closed form expression for 63 where
Iy and I represent the length of the shoulder and elbow
links respectively.. However, because of the inaccuracy
of the arccos operation, we can employ the half-angle

. 26 _ l—cosb :
formula: tan 3 = Thcosd Thus, we obtain that
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where the plus-minus sign represents the ‘“elbow-up”
and “elbow-down” solutions. Then, by subtracting the
contribution of the elbow section of the arm, we can
obtain

cos 3 =

2'(l1 + I3 cos03) — p'lasin b
P (I + la cosB3) + 2’5 sin O3

(6)

0, = arctan

which based on a flag, we can choose either the “elbow-
up” and “elbow-down” solution to suit the task we are
performing.

One of the largest advantages to this approach is
the speed. We do not need an iterative solution which
takes significantly more time to run. This allows us to
recalculate joint angles frequently when needed. How-
ever, this does not take into account the position of the
gripper in the end-effector. We will treat this as a small-
perturbation of the current inverse kinematics problem
in the experiments described in Section IV due to the
limited surface area of the gripper arm.

D. SIFT features for Drawer Identification

The SIFT algorithm is used to locate the pixel location
of a given drawer in the webcam image. Each drawer has
a unique image taped on the front which can be located
by matching SIFT features between the target image
and the camera image. The SIFT algorithm was chosen
because it works under different lighting conditions and
camera angles.

The algorithm was implemented in ROS by using the
SIFT binaries created by David Lowe. These were run
by a C++ wrapper that first created the sift features for
both the image key and the camera output and then
checked for matches between the images. If even one
match was found between the images the program would
use the location of the match in each image along with
the dimensions of the key to determine the center of
the key in the image, shown in Figure 5. It would then
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Fig. 5. Image keys were compared with the camera image to find
matching features using the SIFT algorithm.
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Fig. 6. Mapping from Image Space to Cartesian Space

publishes the pixel x and y coordinates so other ROS
nodes could use the drawer coordinates.

The SIFT image keys used on the drawers were scenes
in nature that were free of patterns or regular shapes.
These types of images work well with sift because they
generate a lot of unique features that can be matched
to the camera feed. The tolerance for matching was
set fairly low so that no false matches were identified,
however this also meant that it was more difficult to
ensure a match in difficult lighting or an obscure angle.

E. Camera Calibration using Bilinear Interpolation

The camera needs to be calibrated in order to convert
the image pixel coordinates to Cartesian coordinates
in 3D space. Since all of the tasks we consider are
performed on a plane, bilinear interpolation provides a
good solution. Consider the mapping of a point in the
image space to a point in the Cartesian space shown in
the following figure.

We assume the image points Pj(i) and the corre-

sponding Cartesian points Pj(c) both form a quadrilat-

eral. Using bilinear interpolation, any point within the
boundary can be expressed as a linear combination of



these calibration points. We can express the coordinates
of the image point P(*) as a function of two constants
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Solving for ¢ yields

po (- s)(xél) - m(’:)) + s(al? x(%)) ©
(1= )y —8)) + s(at” — )

=90 —y) + s —y) (10)
(1= 8)w —98) + st — 8)

Eliminating ¢ from these two equations yields a
quadratic equation in s. The 2nd-order polynomial is
written in Bernstein form for numerical stability when
solving the system equations.

A(1—8)*+2B(1 —s)s+Cs* =0 (11

where the constants A, B, C are given by
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where x denotes the 3D cross product (e.g. Py x P, =
Zoy1 — Yox1). The solution to the quadratic equation is

given by
_(A-B)+vVB?- AC (15)
T A-2B+C

When A — 2B + C = 0, then the quadratic equation is
linear and the solution is given by

s= (16)

With s and ¢ known, the coordinates of the desired
Cartesian point P(°) are given by
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Fig. 7.

Specifying the calibration points.

The user calibrates the camera by specifying the four
points in the image space as shown in the follow-
ing figure. The user also provides the corresponding
Cartesian coordinates for each of these four points.
The program then takes an image pixel coordinate as
input and produces a Cartesian coordinate. The Cartesian
coordinate can be passed to the inverse kinematics to
produce the joint angles to move the arm to the desired
drawer position.

FE. Communication of Components

In ROS, there are two main paradigms for communi-
cation between different nodes. Nodes are modular pro-
cesses that perform computations: publisher/subscriber
and service/client. In the publisher/subscriber paradigm,
nodes send out a message by publishing it to a given
topic name. This topic has a name specified through a
string which identifies the content of the message. Other
nodes can subsequently subscribe to a topic and obtain
the message. This paradigm extends to many concurrent
publishers and subscribers to the same topic.

The service/client paradigm differs from the pub-
lisher/subscriber paradigm in that involves a two way
request/reply communication as opposed to the one-way
publishing of a message. A node will offer a service
under a certain name and a client can send this service
a message an receive the appropriate reply.

The controller is encapsulated in a publish/subscribe
model. This fits with its purpose because it sends a
message to each joint in the robotic arm. These messages
do not need to receive a reply and it is thus beneficial
to use the publish/subscribe model because allows many
concurrent subscribers which allow other nodes to listen



in on the arm’s current position. In addition, we can
specify the frequency and duration of the publishing
of the command which is useful in planning out se-
quential movements of the arm. In contrast, the inverse
kinematics calculations are used with a service/client
model. This model is appropriate because given certain
inputs for the global Cartesian coordinates, we output
the subsequent joint space coordinates. Thus, with the
client can send a request to the service with the global
coordinates and the service will respond with the joint
space coordinates. This is important because we only
need to make the calculation when a new position is
determined for the robot and this can be handled with a
single request instead of a series of published messages.

Then, using a separate program, we obtain the lo-
cation of the object in the image using SIFT feature
mapping. Once we have obtained the image coordinate,
we continually publish it. Similarly, the central module
which unifies the components subscribes to the image
coordinate. Using bilinear interpolation, it obtains the
3D global coordinate. From this, a request is sent to
the inverse kinematics service and the corresponding
joint space coordinates are received. Then, we call the
controller to publish the joint space coordinates of each
joint to the servos which allows the robot to move to
the desired position as seen in the image.

IV. EXPERIMENTS
A. Control through Specification of Global Coordinates

Using the controller and inverse kinematics, we were
able to specify a global coordinate and subsequently
move there. In addition, using the Camera Clicker code,
we were able to click on a point in an image from the
webcam and the arm would subsequently move there.

In the first experiment, we tested the robustness of
the inverse kinematics and the controller. Using a series
of preprogrammed commands that specified the global
coordinate to move to and whether the fingers of the
AX12 Smart Robotic Arm should open or close, we
aimed to pick up four bolts at different parts of the plane
and drop them into a drawer. The robot arm performed
well on this test and was able to pick up each of the four
bolts and drop them into the box that was approximately
2 cm by 4 cm from a height of 10 cm.

This demonstrates that the inverse kinematics and the
controller were working correctly and had reasonable
accuracy in tasks. This is important because robotic
problems are generally phrased in global coordinates.
In addition, the controller is extremely important so
that actions prescribed by the underlying algorithms and
transformations can actually be executed in real-life. In
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Fig. 8. Before Execution of the Camera Clicker code

addition, many problems of picking up objects has the
combination of the inverse kinematics and controller as
a fundamental component.

Using the camera clicker code, we were able to move
the arm to a certain position that was specified in an
image as shown in Figure 8 and 9. Once we clicked on
a certain number of points, these points on the 2D plane
were published. Using bilinear interpolation, we subse-
quently transformed these to the 3D global Cartesian
coordinates. This allowed us to use the controller and
inverse kinematics service as described above to move
the arm to the desired position.

The success of this test is shown in the images.
We can see that before and after, the arm has moved
extremely close to the clicked position. This further
demonstrates the robustness of the controller and the
inverse kinematics service.

Overall, this experiment provided us with the chance
to test basic components along with the bilinear interpo-
lation code that will be extremely important in achieving
our final goal of opening a drawer.

B. SIFT Feature Identification

The SIFT algorithm is supposed to be light and scale
invariant, however under very different lighting or when
the drawer is greatly angled the algorithm is not be able
to find the drawer image key (cropped out of the camera
source image for improved accuracy). It is difficult to
determine the bounds for exactly how angled or what
kind of lighting causes the algorithm to fail both because
of the difficulty of quantifying changes in lighting, and
because some keys worked better than others. When the
same lighting was used for both generating the key and
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Fig. 10. Left: An uninformative key with low contrast and few details.
Right: An ideal key with high contrast and lots of unique features.

finding the drawer and a good key was used the drawer
could be angled up to around 37° and SIFT could still
find the image accurately.

The SIFT images were tested for accuracy by check-
ing for the same key in the same place multiple times
and comparing the results. It was found that the image
keys that worked best were ones with high contrast
and sharp detail, as shown in Figure 10. The number
of features generated for the keys varied from as little
as 11 to as many as 53. With good keys chosen a
match was almost always ensured, and from running
the algorithm 55 times with five different good keys the
average number of matches was 6.8 with no incorrect
matches found. As stated previously, the algorithm only
needs one match to correctly find the drawers pixel
location. This means the algorithm found the drawer
100% of the time when using good keys. The pixel
coordinate precision was found to be to less than 3
pixels, and most of the time the algorithm would output
the exact same coordinates if the drawers were in the
same place.

C. Drawer Manipulations

Using the camera and SIFT, the drawers were iden-
tified and the optimal grasping point was determined
heuristically. Although the container has to remain at
a fixed known location, the drawers themselves can
move around within the container. Given a successful

TABLE I
SUCCESS RATE FOR BOTH ALGORITHMS USING DIFFERENT
DEFLECTION ANGLES.

Algorithm Success Rate (0°) Success Rate (15°) Success Rate (30°)
1 475 75 475
2 5/5 4/5 3/5

SIFT identification of the drawers, we were able to
successfully open the drawers.

We developed two drawer opening algorithms that
allowed us to successfully complete the task. Once the
drawer has been successfully identified using SIFT, the
first algorithm moves the end-effector to a position that
is an inch normal to the drawer grasping point. The
fingers then open halfway and the end-effector moves
an inch along the normal. At this point, the finger closes
and the end-effector moves three inches back along the
normal to open the drawer. In order to smooth this
movement, an interpolated trajectory along the normal
was computed. The second algorithm interpolates a
sequence of waypoints so that the end-effector will slide
in from the sides of the container. The remaining steps
are the same as in the first algorithm.

By moving the end-effector along the normal, we
were able to open drawers that were not parallel to the
base. We found the second algorithm to be less robust
when the drawers were not parallel to the base. The end-
effector would sometimes collide with the sides before
reaching the drawer. However, the second algorithm had
a higher success rate of opening the drawers than the first
algorithm when the drawers were parallel to the base.
For each algorithm, we ran 5 trials for 3 different drawer
deflection angles (0° indicates that the drawer is parallel
to the base).

V. CONCLUSIONS

In this project we have developed a hardware and
software platform for arm manipulation using the AX-
12 Smart Robotic Arm. On the hardware side, we
have developed an adjustable mounting system for the
sensors. On the software side, we have developed ROS
nodes for the controller, inverse kinematics, and drawer
manipulations. By using SIFT and heuristic algorithms,
we were successfully able to open drawers at various
deflection angles. Through 15 trials with 2 different
algorithms, we have empirically demonstrated that the
robotic arm can robustly perform the task.

Additional work on this project can include develop-
ing mechanisms for opening the drawers in unstructured
environments. We would like to also incorporate visual
servoing so we handle unexpected collisions between the
arm and environment. A path planner would be needed



to implement the collision avoidance. We would also like
to expand the project to other manipulation tasks like
loading dishes and folding towels. We hope to address
these challenges in future work.
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